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Abstract This paper reviewed the shortcomings of conventional therapies for ischemic stroke and discussed the methods of vascular regenera-

tion, stem cell differentiation, homing and neuronal remodeling after ischemic stroke, to provide potential therapeutic ideas for ischemic stroke.
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1 Introduction

Ischemic stroke is a cerebrovascular disease caused by a blockage
of the cerebral artery. It can lead to insufficient blood supply and
damage to brain tissue. There are two types of ischemic stroke:
thrombotic stroke and embolic stroke''’. The former is caused by
the accumulation of thrombosis in the cerebral artery, and the lat-
ter is the appearance of thrombosis in other parts, such as the
heart, neck, or chest, and into the artery of the brain, where em-

73] More than 77 million people

bolized brain infarction occurs
currently suffer from ischemic strokes, and 7.6 million new ische-
mic strokes each year around the world*'. Stroke is the third most
common disease worldwide, with high mortality and morbidity".
Especially, ischemic stroke causes serious death of nerve cells'® .

Ischemic stroke has complicated pathogenesis. Generally, it
results from cerebral ischemia caused by thrombosis of the cerebral
artery "), It is manifested as atherosclerosis, which can lead to a
series of pathological reactions such as brain energy failure'®’ | ex-
citatory amino acid toxicity’” | inflammatory cytokines''” | free

"' and apoptosis'"*.

radical damage'' Currently, ischemic stroke
can be treated with mechanical thrombectomy and medicines.
These include thrombolytic drugs, antiplatelet drugs, anticoagu-
lants, hypolipids, neuroprotectants, etc.

However, surgical and traditional medication, are only able
to solve thrombosis in order to stop ischemia, and cannot address

131 After ischemic stroke, cer-

the regeneration of infarcted tissue
ebral blood flow decreases, causing oxygen and nutrition to de-
crease in the tissues and hypoxia:m . Enhancement of angiogenesis
is the most promising method of brain tissue regeneration. The re-
establishment of blood supply channels will supply oxygen, nutri-
ents and cytokines to the cerebral infarction area, guide stem cells
to homing, promote axonal outgrowth/neurogenesis and then con-

151 In brain

tribute to functional recovery after cerebral ischemia
development, neurogenesis is closely related to angiogenesis.

In this study, we analyzed the pathogenesis of ischemic
stroke, the current traditional drug treatment, and the mechanisms

of angiogenesis and neuronal remodeling, to provide new ideas for
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self-repair and functional recovery of injured brain tissue after is-

chemic stroke.

2 Pathogenesis for ischemic stroke

Ischemic stroke is caused by insufficient blood flow in brain tis-
sue. There are three main causes of inadequate blood supply to
brain tissue; cerebral artery blockage due to thrombosis or embol-
ism; cerebral artery stenosis; decreased systemic blood circula-

[0=18] " When the blood supply is reduced, nutrients in the

tion
brain, such as glucose and oxygen, are reduced. Moreover, the
reduction of the blood supply may unbalance the metabolism of
nerve cells, leading to acidosis, cell swelling, and ionic imbal-
ance. If ischemia is prolonged, the pH of nerve cells decreases
due to increased abnormal lactate levels and proton production,
which is likely to lead directly to cerebral edema'"".

Furthermore , ischemic stroke is also related to ionic imbalance.
As a result of hypoxia and ATP deficiency, Na®/K*-ATPase
pumps fail, resulting in rapid decreases in K* flow through the cy-
tosol to extracellular compartments, leading to cell membrane de-

polarization ™.

Excitotoxicity is a special neurotoxicity mediated
by glutamate. The «-amino-3-hydroxy-5-methylisoxazole-4-propi-
onic acid subtype of ionotropic glutamate receptors ( AMPA) and
the N-methyl-D-aspartate (NMDA) receptors are glutamate recep-
tors activated by excess glutamate, Na®, and Ca’" influx into
cells, which activates protein kinases, neutral proteases, phospho-

7 The activation of these enzymes, however,

lipases, and lipids
leads to the production of NO, arachidonic acid metabolites, and
superoxide, which further accelerates excitotoxicity and causes
cell death™’. In addition, a variety of cellular inflammatory fac-
tors, such as Tumor necrosis factor-a (TNF-a), Interleukin-13
(IL-18 ), Interleukin-6 (IL-6), and Interleukin-8 (IL-18),
cause neuronal and glial cell death during brain ischemia by acti-
vating cellular production and release of pro-inflammatory fac-

[23]

tors . The involvement of various molecules in the pathogenesis

of ischemic stroke was summarized in Fig. 1.

3 Traditional drug treatment
3.1 Thrombolytic drugs Thrombolysis is a common treatment
for ischemic stroke. As times have changed, the main thrombolyt-

ic drugs used at different times have changed as well. Early thera-
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Fig.1 Various molecules in the pathogenesis of ischemic stroke

peutic drugs include streptokinase (SK), and urokinase (UK).
When used to treat ischemic stroke, SK and UK can cause symp-
tomatic intracranial hemorrhage, and the longer duration of admin-
istration increases bleeding problems™ .

Tissue plasminogen activator (tPA) is the only FDA-ap-
proved thrombolytic drug for the treatment of acute ischemic
stroke. The thrombolytic mechanism of tPA is the activation of en-
dogenous fibrinogen into fibrinolytic enzymes, leading to thrombus

2] Tt is widely used for intravenous or intravascular ad-

rupture
ministration. The study revealed that injections of tPA within
4.5 h after stroke could reduce neuronal death and cerebral infarc-
tion area. However, because of the narrow time window of tPA
treatment, cerebral hemorrhage may occur during treatment, re-

sulting in secondary injury””.

Recombinant tissue plasminogen
activator (r-tPA) is a molecule in which tPA is genetically modi-
fied to activate zymogen plasminogen to produce active plasminase

8] Nevertheless, since r-tPA poses a risk of

to destroy thrombosis
bleeding, people are looking for more thrombolytic agents.

Over the last few years, several fibrinolytic agents have been
found and applied to treat ischemic stroke, such as alteplase,
pamiteplase, ignificantl, monteplase, and lanoteplase. Despite
the long half-lives of these thrombolytic agents, their safety and ef-
fectiveness have not improved ignificantly ™. A novel drug named
Staphylokinase for acute ischemic stroke has been developed that
has a low probability of symptomatic intracranial hemorrhage and
serious adverse events compared to alteplase. It has been shown to
be safer than alteplase in small trials, but further studies are nee-
ded because of inadequate clinical trial results™'. Although this
result shows good promise for application, there are still some
studies left to complete.

3.2 Antiplatelets and Anticoagulants drug Hemostasis is a
complex process in which platelets and clotting factors act to stop
bleeding, a process that can lead to thrombosis and obstruction of
coronary or cerebral vessels, a predisposing event for myocardial
infarction and ischemic stroke'™’. Antiplatelet drugs and anticoag-
ulants play a significant role in treating ischemic stroke. Preven-
tion of ischemic strokes can also be done with antiplatelet and an-
ticoagulant treatment.

Aspirin is an antiplatelet. Aspirin acetylates Cyclooxygenase-
1(COX-1), preventing the conversion of arachidonic acid into in-
traperoxides of prostaglandins, which are intermediates that pro-
duce ThromboxaneA2 (TXA2). Platelet aggregation and vasocom-
pression are mediated by TXA2, and aspirin studies reduced hem-
orrhage”™". As one of the most commonly used antiplatelet medi-
cations in the world, clopidogrel is essential in the secondary pre-
vention of ischemic stroke. It is an ADP receptor inhibitor that
controls platelet aggregation without obstructing the metabolism of

arachidonic acid™'. In addition, Ticagrelor can also be used in

the prevention of ischemic stroke™ .

These Purinergic Receptor
P2Y12 inhibitors combined with aspirin are more effective in pre-
venting recurrent stroke than aspirin alone and have a reduced risk

of bleeding™"'.
appear to have a significantly increased risk of hemorrhagic con-

Vorapaxar, a novel antiplatelet agent, does not

version or death in patients treated with first ischemic stroke ™.
Furthermore, either tirofiban alone intravenously or in combination
with other drugs intra-arterially reduces mortality in patients with
ischemic stroke without the risk of bleeding™’. Certain antiplate-
let drugs are also used to treat ischemic stroke, including Eptifi-
batide " and Abciximab ™.

Traditional anticoagulants include heparin and vitamin K an-
tagonists, and several new anticoagulants have been developed in
the last decade or so. Heparins of low molecular weight and regular
heparin bind to antithrombin and increase its activity, which indi-
) Warfarin is typi-
cal of vitamin K antagonists. It inhibits the breakdown of vitamin K

rectly inhibits a number of coagulation factors

epoxide,, which activates coagulation factors and delays the develop-
ment of thrombin and fibrin clots, preventing vitamin K regenera-

I The use of warfarin before stroke can prevent thrombosis

tion
from narrowing and reducing stroke levels ', Moreover, Dabigatran
is a direct thrombin inhibitor that deactivates enzymes by directly
binding to thrombin, preventing fibrin clots from forming. Several
Xa-factor inhibitors, including rivaroxaban, apixaban, and edoxa-
ban, can be used to prevent systemic embolism and stroke ™.
3.3 Neuroprotective agents

ous consequences, including cerebral infarction, permanent brain
[42]

Ischemic stroke can lead to seri-
injury, and neurological dysfunction Stroke exacerbates neu-
ronal damage by producing various pro-inflammatory cytokines and
Reactive oxygen species ( ROS)™ ™' Therefore, Antioxidant
therapy is essential for nerve damage. Neuroprotective agents used
alone are ineffective and often used in combination with other
drugs. Other categories of neuroprotective agents include gamma-
aminobutyric acid ( GABA) agonists, calcium channel blockers,
calcium chelators, glutamate inhibitors, etc. A list of various no-
vel neuroprotective agents has been presented in the Table 1.
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Tablel List of some novel neuroprotective agents

Categories Drug name Features References
Antioxidants Minocycline f.’ron'loling microglia M2 polarization and inhib'iting M1 polarization, reducing ‘the Volul'n'e of cercbral' in- (45 —46]
farction and reduce neuronal damage, prompting neuronal endurance and brain capability recuperation
Edaravone Scavenging free radicals and lipid peroxidation, ultimately inhibiting nerve damage [47 -48]
GABA agonists Clomethiazole Improving brain function in animal models of cerebrovascular disease [49-50]
Diazepam
Caleium chamnel blockers Nimodipine Not.only inhibiting atherosclerotic plaque deposition but also showing antihypertensive and neuropro- [51-53]
tective effects
Nicardipine
Nitrendipine
Nifedipine
Amlodipine
Calcium chelators EDTA Cbelaling with ce'ilcium to' prevent alherosclfimtic plaque formation or d(‘fstm(,tt.ion, while chelating [54]
with other metal ions to trigger ROS production and produce neuroprotective effects
Blocking receptors and calcium channels reduces glutamate release and hypothermia, thereby reduc-
Glutamate inhibitors MgSO, ing infarct size and improving cerebral blood flow, thereby protecting neuronal function and reducing  [55 —57]

neuronal loss, resulting in neuroprotective effects

In addition, studies have shown that opioid antagonists such
as Naloxone, Naltrexone, and Nalmefene can minimize blood
brain barrier (BBB) damage, reduce stroke severity and promote
nerve recovery . Some growth factors, such as erythropoietin
(EPO)™, Haematopoietic growth factors ( HGFs) 70 and
Granulocyte colony-stimulating factor (G-CSF)'® have good po-
tential in treating ischemic strokes because they can stimulate an-
giogenesis and neuroregeneration and reduce neuroinflammation.
Preclinical studies have shown that neuroprotective agents can sig-
nificantly improve cerebral infarction area and brain function, but
clinical studies are not effective. The prospect of the neuroprotec-
tive agent in the treatment of ischemic stroke is not clear.

4 Current challenges in traditional therapy

Until now, thrombolytic therapy and endovascular thrombectomy
are effective in the treatment of acute ischemic stroke'®''. Clini-
cal studies and available literature showed that the success rate
of single-drug therapy is low and multiple-drug combination
treatment can improve the success rate for better treatment and
prevention of ischemic stroke. Thrombolytic drugs need to be
treated within the time window (4.5 h of the onset of stroke
symptoms ) **" | and brain hemorrhage can occur over time,
causing additional damage to the brain. Thrombolysis can only
dissolve thrombosis to stop ischemia, not limit the damage
197 Although anti-

platelet and anticoagulant drugs help prevent thrombosis to some

caused by inflammation during reperfusion

extent, they may cause intracranial hemorrhage and even gastro-

[31.94] " preclinical studies have shown that

intestinal bleeding
neuroprotective agents can reduce the size of cerebral infarcts
and improve functional prognosis, but clinical studies are inef-
fective and further research is needed'®’. Research data on an-
tihypertensive drugs and cholesterol-lowering drugs in ischemic
stroke are not perfect, so some research time is needed in the
future. Although these treatments have some efficacy, they do
not solve the problem of cerebral ischemia fundamentally and do
not regenerate the area of cerebral infarction.

5 Angiogenesis after ischemic stroke

Angiogenesis is essential for recovery from ischemic stroke,

which is necessary for wound healing after stimulation by hypox-

ia. In the human brain, angiogenesis occurs 3 —4 d after ische-
]

mic injury'®’. Tt showed that patients with greater cerebral vas-

cular density have better survival times and recovery outcomes

than those with less vascular density " .

The main ways to re-
verse ischemic injury are; regeneration of blood vessels; estab-
lishment of blood supply channels to guide the homing of stem

cells!® %

Angiogenesis provides nutritional, growth factors to
promote maturation of the nervous system'™'. Thus, angiogene-
sis may improve ischemic cerebral perfusion and play a role in
recovery. Angiogenesis is dependent on vascular growth factors,
proliferation and differentiation of stem cells, as well as a num-
ber of factors and other pathways. Increased expression of some
growth factors after cerebral ischemia leads to enhanced prolifer-
ation of endogenous neural stem cell (NSCs). It then migrates
from the site of birth to the site of ischemia ™ .

production provides oxygen and nutrients to create the microen-
1]

Microvascular
vironment needed for nerve cell migration'’ Second, mi-
crovessels provide B1 integrin signals that promote NSCs to form
chain-like aggregates and migrate along the vasculature to the le-

) At the same time, during development and regen-

sion site
eration, blood vessels act as scaffolds in the migration of neu-
rons in the brain, helping them to migrate to the injured area af-
ter an ischemic stroke and contributing to neuronal regenera-
tion' ™. After proliferation and migration of NSCs, endothelial
cells release brain-derived neurotrophic factor (BDNF) to stim-
ulate NSCs and produce projection neurons and interneuron in
vitro' """ .

5.1 Angiogenic factors that act directly on the vascular
system  After ischemic stroke occurs, the body passes through
angiogenesis to relieve the injury caused by ischemia. However,
vascular development and reconstruction require numerous sig-
naling factors, of which there are two types of regulatory mole-

cules that specifically act on the vascular system; One is the
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vascular endothelial growth factor ( VEGF) and its receptor
(VEGFR) structure, VEGF/VEGFR system, another class of
angiopoietin ( Ang) and its receptors Tie-2 the Ang/Tie-2 of the
RTK family.

VEGF is the most potent cytokine known for its pro-angio-
genic effect, which increases venous permeability, induces an-
glogenesis, and plays an important role in wound healing and
other processes. VEGE expression increased significantly after
cerebral ischemia, peaking at day 4 and decreasing to normal
levels by day 7 — 10",

delayed VEGF treatment in neonatal rats promotes endothelial

In a cerebral artery occlusion model,

proliferation , ameliorates brain injury, and increases total vessel
volume after neonatal stroke' . Zechariah et al. """’ found that
intracerebroventricular injection of VEGF into mice increased
brain capillary density and reduced infarct size and inflammation
within 10 d and enhanced the integrity of the post-ischemic
blood-brain barrier by day 21. In addition, VEGF is an impor-
tant regulator of neurogenesis. In the ischemic brain, VEGF-A/
VEGFR2 promotes post-ischemic neurovascular remodeling in
neuroblasts migrating from the ipsilateral subventricular zone a-
long the vasculature to the center of the ischemic lesion'” .
VEGF can also regulate the proliferation of adult hippocampal
neural stem cells through MEK/ERK and PI3K/AKT dependent
signaling pathways to regulate adult hippocampal neural stem
cell proliferation’™’. In the rat MCAO model, 1 or 2 d after
MCAO, VEGF reduces infarction volume, improves neurologi-

cal defects, and stimulates angiogenesis™’ .

The above studies
show that VEGF can promote angiogenesis and neurogenesis af-
ter cerebral ischemia, protect ischemic neurons in the brain,
improve axonal plasticity, and participate in vascular repair and
functional recovery after cerebral ischemia in many ways. Cop-
per activates vascular endothelial growth factor receptor 1
( VEGFR-1) -dependent signaling channels that inhibit cardiac
hypertrophy and inhibits vascular endothelial growth factor re-
ceptor 2 ( VEGFR-2 ) -dependent signaling channels that pro-
mote myocardial hypertrophy signaling channels'® =%/

There are four main members of the angiopoietin ( Ang)
family, namely Angl, Ang2, Ang3 and Angd. Angl, through the
tyrosine kinase receptor Tie2, can promote cell adhesion protein se-
cretion, increase endothelial interactions, reduce vascular permea-
bility, and inhibit thrombin-induced calcium inward flow and in-
flammatory responses™'. Angl, through the tyrosine kinase recep-
tor Tie2, can promote cell adhesion protein secretion, increase en-
dothelial interactions, reduce vascular permeability, and inhibit
thrombin-induced calcium inward flow and inflammatory respon-
ses™ . Lin et al. "™ found that Ang-2 expression peaked after 24 h
of cerebral ischemia in rats, and Tie-2 expression increased signifi-
cantly and remained elevated for 2 weeks.

5.2 Related factors
(G-CSF) is the main hematopoietic cytokine that controls the pro-

Granulocyte colony-stimulating factor

liferation and differentiation of bone marrow progenitor cells into
neutrophils. Sun et al. "’ found that intranasal administration of
G-CSF enhances the protective effects of ischemic brain injury in
rats, as evidenced by post-ischemic angiogenesis, reduction in in-
farct size and neurological recovery. In a chronically perfused is-

chemic stroke model, G-CSF treatment resulted in intracranial col-
lateral artery growth and improved cerebral hemodynamic re-
serve . In neonatal hypoxic-ischemic encephalopathy, G-CSF is
neuroprotective against neonatal brain injury by inhibiting apopto-
sis and inflammation"*’ .

Basic fibrobast growth factor (bFGF) is a well-known neuro-

. . . 8
protective and angiogenic molecule ™.

Intravenous bFGF injec-
tion reduced cortical infarction volume and improved motor func-
tion 2 h after occlusion to MCAO rats'™’. bFGF is upregulated in
peripheral cells after cerebral ischemia, as well as around early
infarction after ischemic stroke. It activates pericellular function
through interaction with platelet-derived growth factor ( PDGF-
BB), which may contribute to nerve protection and angiogene-
sis"”'. Intranasal delivery of bFGF directly to the brain improves
behavior recovery in MCAO rats™™’.

Insulin-like growth factor-1 (IGF-1) is considered to be an
cerebrovascular

important factor

[93

neuroprotective against

ischemia'”’. Previous studies have shown that, IGF-1 levels in-
crease during brain injury and are involved in neuroinflammation
recovery . IGF-1 was injected subcutaneously 30 and 120 min
after stroke, and the treatment was found to reduce the infarction
area and increase motor function'’.

The self-repair mechanism is initiated immediately after is-
chemic injury occurs. Hypoxia-inducible factor-1 (HIF-1) is a
transcription factor that maintains the oxygen state in hypoxia by
participating in angiogenesis, cell proliferation and survival, glu-

. 96 -97
cose metabolism" !

. HIF-1 is a specific transcription factor ac-
tivated in the hypoxia state. At the same time, it participates in
many important physiological processes such as cardiovascular pro-
duction, tumor development, anti-cerebral ischemia'® "™, The
expression of HIF-1 is related to the ischemic stroke period. In
1996, researchers first found increased expression of HIF-1aw and
HIF-1B in the brain when mice or rats were exposed to 60 min of

hypoxia ™.

In another brain hypoxia rat model, researchers
found that the expression of HIF-1a was upregulated at 4 h, peak-
ed at 8 h, and declined at 24 h after hypoxia ™"

sidering the different expressions of HIF-1 in the brain at various

. Therefore, con-

periods of stroke, may bring a breakthrough in the treatment of is-
chemic stroke. Copper is an essential element in humans that reg-

[102)

ulates HIF-1 gene expression Copper supplementation acti-

vates the HIF-1 regulated angiogenesis gene and promotes angio-

[o2] . . . L .
, improving ischemia tissue regeneration. The connec-

genesis
tion between copper and HIF-1 is shown in Fig. 2.

HIF-1 is composed of HIF-la and HIF-1B. Under normal
oxygen conditions, proline residue Pro402 and Pro564 on HIF-1a
subunit can be hydroxylated by proline hydroxylase (PHD) recog-
nition. The hydroxylated HIF-1a binds to the von Hippel-Lindau
(VHL) protein, resulting in ubiquitination of HIF-la and degra-
dation of the proteasome. When the cells are in hypoxic condition,
both hydroxylation and degradation of HIF-la are inhibited and
accumulated in the cytoplasm. Copper chaperone for superoxide
dismutase-1 (CCS) brings copper into the nucleus. Copper is re-
quired for the interaction of HIF-1 with HREs to initiate copper-

dependent gene expression.
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Fig.2 Copper is involved in the regulation of ischemic regeneration
by HIF-1
Sonic hedgehog (SHH) is essential for pattern formation, ax-
on guidance, and proliferation and differentiation of neurons in the

191 Huang et al. "™’ found that

SHH reduced infarct size and stimulated proliferation of nestin

developing central nervous system

(+ ) neural progenitor cells in a rat MCAO model. Chen
et al. " found that SHH improved neurological scores and re-
duced infarct size, improved microvessel density in the ischemic
border zone, and promoted angiogenesis and neuronal survival in a
rat model of permanent middle cerebral artery occlusion. It also
enhanced VEGF expression. The above studies suggest that SHH
protects the brain from ischemic damage.

BDNF is one of the most studied neurotrophic factors. In rats
after cerebral ischemia, attenuated BDNF levels completely nega-
ted the recovery of skilled movements, and increasing BDNF lev-
els improved neural recovery'™ . BDNF is also involved in the
expression of VEGF, which can induce vascular regeneration in
endothelial cells'””’

esis in MCAO rats by upregulating the expression of the BNDF/

[108]

. Astragaloside TV ( AST) promotes neurogen-

TrkB signaling pathway

EPO is at low levels in normal brain, and EPO can cross the
blood-brain barrier under hypoxia, and permeability increases dur-
ing neurological injury. EPO is well applied to promote angiogene-
sis and cerebral blood flow recovery in animal models of cerebral

. . [109-110
ischemia’ !

. In rats hypoxic for 3 or 21 d prior to permanent
MCADO surgery, intracerebral EPO levels increased and infarct size
decreased 24 h after ischemia'""’. In a neonatal hypoxic-ischemic
rat model, EPO promotes the expression of synaptic proteins Syn-
apsinl and PSD95, restores axon density, and contributes to the
improvement of electrophysiological properties and spatial memory

[112]

performance of synapses™ . Currently, recombinant human EPO

(rhEPO) has completed Phase II in the treatment of ischemic
stroke and may be a promising drug for development despite its
shortcomings' "’

5.3 Stem cell population Stem cell therapy is a good way to
promote brain tissue regeneration. These methods include intrave-
nous injection of pluripotent stem cells and in situ injection of in-

I Currently, three main types

duced pluripotent stem cells
of stem cells, multifunctional stem cells and neural stem cells,
and hematopoietic/endothelial stem cells, are used for ischemic
stroke treatment. Stem cell homing needs to be driven by homing
factors, the most prominent stem cell homing factor is the chemo-
kine SDF-1a/CXCLI2"®'. Stromal cell-derived factor-1( SDF-1) ,
a target gene of HIF-1, is upregulated in animal models of ische-
mic stroke and in human brains with ischemic injury[m]. It helps
to increase and participate in the repair of nerve function after is-

") The mobilization and homing of these stem

chemic injuryL
cells depend on vascular remodeling to function. Copper-induced
angiogenesis is expected to trigger natural regeneration of the
brain, and improvement of the brain microenvironment through an-
giogenesis facilitates stem cell homing. Meanwhile, copper (Cu)
can upregulate HIF-1a and indirectly increase SDF-1 level to pro-
mote stem cell homing'"”’. Copper can also direct the differentia-
tion of stem cells into damaged areas for therapeutic effects. Sche-
matic diagram of stem cell therapy for ischemic stroke is shown in

Fig. 3.

Ischemic stroke Stem cell treatment Angiogenesis and neuronal remodeling
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+ CXCLIZEXCRA

Fig. 3  Molecular mechanisms of stem cell therapy in ischemic
stroke

By injecting stem cells, they are induced to secrete vascular
growth factors, which can open up signaling pathways that ulti-
mately lead to vascular regeneration and neuronal remodeling.
Mesenchymal stem cells ( MSCs) have differentiation potential
with the ability to differentiate into endothelial cells, glial cells
and neurons'™’. Animal studies have shown that MSC transplan-
tation reduces the size of cerebral infarcts and improves neurologi-

=120 " In vitro studies have shown that MSC injected

cal function
into the periphery preferentially migrates to the area of injury and
improves recovery of the injury site!™’. VEGF secreted by MSCs
promotes vascular maturation. MSCs release CXCL-11, which
binds to CXCR-3 of the endothelial cells on the blood-brain barri-
er, activates ERK1/2 signals and opens tight junctions'™’. Addi-
tionally, P13K/Akt pathways and Rho/ROCK signaling pathways

[125]

are key to MSCs migration' =" . MSCs promote vascular regenera-
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tion and restore neural function by expressing VEGF and
BDNF'*"' In addition, Ang-1, Ang2, bFGF, SDF-la, and
FGF1 may help promote angiogenesis in the ischemic core and
marginal regions'™” 7.

After ischemic stroke, endogenous NSCs release chemokine
signal SDF-1, VEGF, and angiopoietin through damaged tis-
sue ™. Hypoxic environments trigger differentiation of NSCs into
nerve cell types to support neurogenesis. This process relies on
P13k/ Akt signaling pathways'™’. Transplantation of NSCs is also
a promising approach for the treatment of ischemic stroke as a first
step in cell-mediated restoration of homeostasis within the area of
injury' ™. NSCs homing to the site of injury are able to generate
137 -138]

new neurons and respond to various pathological changes .

In addition, intra-arterial injections provide a more direct route
and are highly effective in strokes'"”’

Bone marrow stem cells (BMSCs) also have promising appli-
cations in ischemic stroke. In a mouse model of ischemic stroke,
BMSC migrates to the site of ischemia, upregulates neurotrophins
and produces growth factors, thereby inhibiting inflammation to

0]

promote recovery ). Delivery of BMSC via the intranasal route

allows migration through the nasal mucosa to the site of infarction
and provides neuroprotection and repair '’

In recent years, endothelial progenitor cells (EPCs) have re-
ceived increasing attention, especially in the field of ischemic
brain diseases. EPCs have been reported to promote neurovascular
remodeling and functional recovery after brain injury!®’. The
mechanism of EPCs to promote vascular regeneration may be asso-
ciated with increased VEGF in plasma and upregulation of HIF-1a
signaling pathways''*"’.
in promoting vascular remodeling through CXCL12-CXCR4

[145]

Hypoxic treated EPCs are more effective
axe'"™'. Zhang et al. injected bone marrow-derived EPCs into
adult mice and found enlarged thin-walled vessels at the border of
the ischemic injury or intussusception. This somehow confirms that

EPCs promote post-ischemic revascularization. Fan et al. "'* in-

jected EPC into nude mice 1 h after tMCAO and found a signifi-
cant reduction in ischemic infarct volume and increased angiogene-
sis in the infarcted region 3 d after tMCAO.

5.4 Other ways to promote vascular regeneration
years, the role of microRNAs (miRs) in mediating angiogenesis

In recent

has been widely studied. miR-210 upregulated expression of

0477 Exosome

VEGF in endothelial cells promotes angiogenesis
mediated targeted delivery miR-210 formation of angiogenic agents
into the ischemic brain, providing a strategy for ischemic stroke
treatment' /. Upregulation miR-874-3p can activate the Wnt/B-
serial protein pathway to inhibit CXCLI2 expression and promote

1 Other miRs that promote vascular regeneration

through upregulation are miR-124, miR107, miR-26a""""""'.
However, some miRs upregulation inhibits angiogenesis after is-

chemia, such as miR-493, miR-27b, miR-191, miR-377""""7,

In the traditional sense, microglia activation is generally be-

angiogenesis

lieved to be harmful to ischemic apoplexy, but recent studies have
found that microglia activation also plays a role in nerve cell gen-
eration and synaptic remodeling, thus promoting recovery after
cerebral ischemia””’. In microglia PPARy coactivator-la. (PGC-
la) by autophagy and mitochondrial autophagy, neurological dys-

function weakens after ischemic injury'"™.

6 Conclusions and prospects

Previous treatment of cerebral ischemia stroke had drawbacks,
while some ways have the potential to reverse cerebral infarction
and promote blood vessel regeneration. Vascular regeneration is
the key to regeneration of brain tissue after ischemic injury. Post-
ischemic angiogenesis may regulate axonal growth and NSCs, in-
cluding the proliferation, migration and maturation of neural stem

[68]

cells Microvasculature brings oxygen, nutrients and growth

factors to the ischemic injury zone, creating an appropriate micro-

L Angiogenesis may provide a

environment for cell migration
suitable microenvironment to trigger axonal growth and induce
neurogenesis. This approach will be of great benefit to patients
with ischemic stroke. If we can better promote the regeneration of
blood vessels after cerebral ischemia, while enhancing the protec-
tion and regeneration of damaged neurons, it will explore a prom-
ising path for the treatment of ischemic stroke. However, vascular
regeneration also faces the following questions: (i) How can blood
vessels grow in infarcted areas rather than elsewhere; (ii) How to
restore function of the regenerated blood vessels, and no bleeding.
These issues will be the focus of future research, and if they are
solved, vascular regeneration will play a significant role in treating

ischemic stroke.
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