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Abstract

[ Objectives | To explore the target and mechanism of Schaftoside on cholestasis and steatosis based on network pharmacology and

molecular docking. [ Methods ] The targets of " cholestasis" and " steatosis" were predicted using databases (OMIM and GeneCards) , and the
key targets were obtained after screening the retrieval data. The binding relationship between Schaftoside and key targets was analyzed by mo-
lecular docking. [ Results] There were 3 370 and 4 433 targets for " cholestasis" and "steatosis" , respectively, and 1 767 overlapping genes
were obtained. The results of molecular docking showed that Schaftoside had high binding energy with key targets. [ Conclusions ] Schaftoside

can alleviate cholestasis and steatosis by regulating SREBP-1, CYP7, PPAR-gamma and other key targets to protect liver.
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1 Introduction

Schaftoside, as a flavonoid carbon compound, exists in many
plants, including Glycyrrhiza uralensis Fisch, sugarcane, Isodon
serra (Maximowicz) Kudo, Artemisia argyi Levl. et Vant. , Arisae-

ma erubescens ( Wall. ) Schott, etc''!. Modern pharmacological
studies have revealed multiple pharmacological activities of

=31 inhibition of gall-
4

Schaftoside, including anti-inflammatory"
bladder, bladder and kidney stone formation'*! | protection against
acetaminophen-induced liver injury”’ and inhibition of liver lipid
accumulation'®’ . Although Schaftoside has a variety of pharmaco-
logical effects, its alleviation effects and mechanisms on cholesta-
sis and steatosis are still not clear. Cholestasis is a pathological
condition in which bile flow is blocked inside and outside the liv-
er, resulting in bile accumulation inside and outside the liver
cells, which may be associated with a variety of liver diseases'” .
Steatosis involves the abnormal accumulation of intracellular fat
and is often associated with metabolic diseases such as nonalcohol-
ic fatty liver disease (NAFLD)™'. The anti-inflammatory and an-
tioxidant properties of Schaftoside may have a positive therapeutic
effect on these pathological conditions, especially in reducing in-
flammation and protecting the liver from further damage'®’. There-
fore, Schaftoside, as the key active component in Desmodium
styracifolium, has important scientific and clinical value in the
treatment of cholestasis and steatosis. This study will further clari-
fy the mechanism of action of Schaftoside in alleviating cholestasis
and steatosis, and provide a scientific basis for the development of

new therapeutic strategies.
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2  Methods

2.1 Software and database Software: Autodock 1. 5.6 soft-
ware; Chem3D; PyMOL 2. 1. 1 software; Discovery Studio 4.5,
eic. Database; OMIM database (http://www. omim. org/ ), Gen-
eCards database (https://www. genecards. org/) , Lianchuan bio-
logical cloud platform ( hitps://www. omicstudio. cn/tool ) , Pub-
Chem database (https://pubchem. ncbi. nlm. nih. gov/) , UniProt
database (https://www. uniprot. org/), PDB database (http://
www. resh. org/ ) | etc.

2.2 Potential target prediction The keywords " cholestasis"
and "steatosis" were searched in OMIM and GeneCards databas-
es, and the search results were sorted out to obtain the targets.
2.3 Construction of molecular docking model The structure
of Schaftoside was obtained from PubChem database and trans-
formed into Chem3D, then saved in MOL2 format. After that, the
protein with ligand molecules was downloaded from the PDB data-
base, the solvent was deleted by PyMOL 2. 1. 1, and the protein
and component data were further hydrogenated and dehydrated by
Autodock 1.5.6 and saved in pdbqt format, and docked by Vina-
1.1.1. Then, PyMOL 2.1.1 and Discovery Studio 4.5 were used

to visualize the results.

3 Results and analysis

3.1 Prediction and screening of disease targets By search-
ing the disease database, 3 370 targets of " cholestasis" and 4 433
targets of "steatosis" were obtained; by taking the intersection of
the Wayne diagram, 1 767 targets were obtained (Fig. 1). The
obtained intersection targets are combined with literatures to
screen and obtain SREBF1 ( encoding protein SREBP-1 ),
CYP7A1 (encoding protein CYP7), PPARG (encoding protein
PPAR-gamma), ABCB4 ( encoding protein MDR3 ), NRI1H4
(encoding protein FXR), ABCBIl ( encoding protein BSEP) ,
NROB2 (encoding protein SHP) , FGF19 (encoding protein FGF-
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19), PPARA (encoding protein PPAR-alpha) , PRKAA1 (enco-
ding protein AMPK) key targets.

3.2 Molecular docking In order to further clarify the binding
effect between Schaftoside and key targets, molecular docking was
carried out by using Autodock 1. 5. 6 software with Schaftoside as
ligand and key target protein as receptor. The results showed that
the binding energy of Schaftoside with key target proteins was less
than — 6 kcal/moL, and it had good binding activity, among
which SREBP-1, CYP7, PPAR-gamma, MDR3, FXR and BSEP
had better binding activity. The docking demonstration is shown in
Fig. 2.
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Fig.2 Molecular docking results

4 Discussion

Cholestasis is a pathological condition in which bile accumulates in
liver cells and blood due to obstruction of intrahepatic and extrahe-
patic bile ducts or dysfunction of liver cells, resulting in the failure
of bile to reach the duodenum normally'™’. Steatosis, particularly
NAFLD, is a growing health problem worldwide, characterized by
the abnormal accumulation of fat in the liver, which is closely re-
lated to metabolic diseases such as metabolic syndrome, type 2 di-
abetes, and cardiovascular disease""’. NAFLD is associated with
the development of biliary tract diseases, including cholestasis. In
patients with NAFLD, fatty deposition in liver tissue not only cau-
ses liver cell damage, but also may lead to bile duct cell damage,
manifested as cholangitis, bile duct swelling, bile duct loss and
251 The role of bile acids in NAFLD is increasingly

recognized. The imbalance of bile acid metabolism in adult pa-

cholestasis

tients with NAFLD increases the risk of liver injury. Studies have
found that the level and composition of bile acids in patients with

NAFLD are significantly different from those in healthy controls,
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and are closely related to the severity of liver disease™™"’. In

summary, cholestasis and steatosis are interrelated in liver disea-
ses, and they may interact with each other to affect liver health by
affecting bile acid metabolism, cholesterol clearance and liver fat
accumulation. Further research will help to understand the com-
plex relationship between these two pathological conditions and
provide guidance for clinical treatment.

After the database search, and combining with the relevant
literature screening, we obtained key targets: SREBF1, CYP7A1,
PPARG, ABCB4, NR1H4, ABCBI1, NROB2, FGF19, PPARA,
and PRKAAL. Farnesoid X receptor (FXR),
latory receptor, can be activated by PPARG to reduce hepatic lipid

as a bile acid regu-

accumulation by increasing fatty acid oxidation and reducing tri-
glyceride synthesis, indicating that PPARG has a potential thera-
. FXR is a key regulator of bile acid

metabolism, which maintains bile acid homeostasis by controlling

peutic effect on cholestasis'®

the transcription of genes related to bile acid synthesis, transforma-

tion, transport and signal transduction'”’. FXR activation can
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promote the transcription of NROB2 (SHP) in the liver, and SHP,
as a gene regulator of CYP7A1 expression'™ ™" | can regulate the
expression of CYP7AL. In addition, FXR can regulate FGF19 to
selectively bind to and activate the hepatic FGF receptor 4 complex
(FGFR4-B-klotho) , which ultimately leads to the inhibition of the
transcription of Cyp7al and Cyp8bI genes encoding key enzymes of
hepatic bile acid synthesis'”'. Among them, CYP7Al plays an
important role in cholestasis and steatosis. As a key cholesterol
7a-hydroxylase, it is responsible for the first step of cholesterol
conversion to bile acid. It is the rate-limiting enzyme of bile acid
biosynthesis and plays a central role in cholesterol metabolism and
bile acid synthesis'™'. Once hepatic bile acid is excessive, activa-
ted FXR/SHP induces ABCB11 (BSEP) expression and increases
bile acid efflux. Both BSEP and ABCB4 ( MDR3) are transport
proteins responsible for transporting phospholipids from hepatocytes
to bile™" | so their dysfunction leads to bile acid accumulation in
hepatocytes, causing cholestasis ™. In the case of cholestasis, the
activity of CYP7A1l may be affected, resulting in increased bile
acid synthesis, further exacerbating cholestasis™'. In NAFLD,
the expression of CYP7Al may be affected, affecting the metabo-
lism of cholesterol and the synthesis of bile acids, which in turn af-
] AMPK, as a master switch

regulating the homeostasis of energy metabolism in vivo, can regu-

fects the accumulation of liver fat

late lipid metabolism-related genes and keep lipid metabolism and
synthesis at a relatively stable level ™', Activated AMPK can in-
hibit ACC activity by down-regulating the expression of SREBP-1,
thereby inhibiting the synthesis of cholesterol and fatty acids, re-
ducing hepatic lipid synthesis and improving hepatic steatosis™’ .
PPARG is a nuclear receptor that regulates lipid metabolism and
inflammatory response, and is involved in the regulation of fatty

[27-3] [t veduces the incidence of he-

acid metabolism and storage
patic steatosis by activating and enhancing the expression of genes
related to fatty acid oxidation. In NAFLD, PPARG transfers fat
from liver tissue by regulating downstream genes, reducing the ac-
cumulation of triglycerides in cells and increasing cholesterol ef-
flux, which inhibits steatosis of liver tissue and reduces liver cell
damage'®’. PPARA is involved in peroxisomal beta oxidation, mi-
tochondrial beta oxidation, fatty acid transport, and hepatic glu-
cose production as a regulator of gene transcription. It plays a key
role in regulating fatty acid transport and oxidation in liver cells by
regulating the transcriptional activity of related genes in the nucle-
us'™'. Therefore, there is a complex interaction between cholesta-
sis and steatosis. The results of molecular docking show that the
above key targets have good binding activity with Schaftoside, indi-
cating that Schaftoside has a potential regulatory effect on cholesta-
sis and steatosis, thus alleviating cholestasis and steatosis to pro-
tect the liver.

In summary, the key targets of cholestasis and steatosis were
obtained by searching and screening the disease database. As a
potential hepatoprotective active component, the binding activity of
Schaftoside with these key targets was further verified by molecular
docking experiments, showing strong binding ability. These results
preliminarily confirm that Schaftoside may play a hepatoprotective
role by regulating key targets to alleviate cholestasis and steatosis.
However, although molecular docking experiments provide prelimi-

nary evidence, the specific regulatory mechanism and pathway of
Schaftoside still need to be clarified through further experimental
studies. Future studies can focus on the direct effects of Schafto-
side on key targets and its effects at the cellular and molecular lev-
els, as well as the verification of its hepatoprotective effects and
safety in animal models or clinical trials.
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