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Abstract Pharmaceutical-Food Homologous Plant-Derived Carbon Dots (P-CDs) have emerged as revolutionary nanomaterials in environmen-
tal pollutant management, demonstrating transformative potential for green chemistry and sustainable material applications. These carbon dots
establish an innovative technical framework by integrating dual " detection-remediation" functionalities through eco-friendly synthesis and high-
value conversion of medicinal-edible plants and agroforestry waste. Their core advantages originate from structural templating effects induced by
natural functional groups ( polyphenols, amino acids) in plant precursors combined with heteroatom self-doping, which synergistically optimizes
optical properties. This combination achieves quantum yields ranging from 3.06% to 84.9% and detection sensitivities spanning nanomolar to
micromolar concentrations. In pollutant detection applications, P-CDs enable ultrasensitive identification of heavy metals (Hg’* , Cu®*, Fe’*)
and organic contaminants ( pesticides, antibiotics) through multi-mechanistic interactions including static quenching (SQ), dynamic quench-
ing (DQ), and Forster resonance energy transfer ( FRET). However, technological translation faces critical challenges including quantum
yield heterogeneity ( >40-fold variation) , matrix interference in complex environmental samples ( signal drift exceeding 12% ) , and scalabili-
ty-related process inconsistencies. Future research priorities should focus on three key areas: standardization of synthesis protocols, develop-
ment of surface passivation strategies (e. g. , SiO, encapsulation) , and optimization of heterojunction designs to enhance interference resist-
ance. The integration of in situ characterization techniques ( particularly X-ray absorption spectroscopy) with machine learning-driven parame-
ter optimization could significantly refine detection-remediation synergies. Concurrently, establishing a comprehensive lifecycle assessment
framework becomes imperative for evaluating environmental impacts and scalability potential. This technology pioneers a sustainable paradigm
for pollution control by bridging the gap between nanomaterial innovation and industrial deployment, thereby accelerating progress toward global
ecological security objectives.
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0 Introduction

The multidimensional management of environmental pollu-

The synthesis of P-CDs has evolved from conventional chemi-
cal methods to biomass-derived precursors, capitalizing on the

tants has become a cornerstone of global sustainable development unique advantages of medicinal-edible plants such as bamboo leav-

. P71 . BT I . . [1 [2] . [3] :
strategies. Rapid industrialization and urbanization have intensi- es' ", bergamot' ™, and Prunus avium . These botanical sources

fied composite pollution systems involving heavy metals (Hg’",
Cu’", Fe’*) and organic contaminants ( pesticides, antibiotics,
dyes), posing severe threats to ecosystems and human health.
Conventional detection techniques such as atomic absorption spec-
troscopy face limitations including complex pretreatment protocols,
single-target detection capabilities ( typically at micromolar lev-
els), and equipment dependency. Similarly, remediation technol-
ogies like Fenton oxidation and activated carbon adsorption exhibit
constrained efficiency and risks of secondary pollution. Within this
context, Pharmaceutical-Food Homologous Plant-Derived Carbon
Dots (P-CDs) have emerged as an innovative " detection-remedia-
tion" integrated platform, leveraging green synthesis principles
and multifunctional design to address contemporary environmental
governance challenges.
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are enriched with natural functional groups—including polyphe-
nols, amino acids, and alkaloids—that serve as molecular tem-
plates for carbon core formation while enabling fluorescence en-
hancement through nitrogen/sulfur self-doping ( quantum yield,
QY: 3.06% —84.9% ). The valorization of agroforestry waste

4] cassava residue™ ) further en-

materials (e. g. , spent tea
hances the economic viability and sustainability of this technology,
aligning with global safety protocols for nanomaterial applications.

In pollutant detection, P-CDs achieve ultrasensitive identifi-
cation through multi-mechanistic interactions involving static
quenching (SQ)"’, dynamic quenching (DQ)"”", Férster reso-
nance energy transfer ( FRET) B and photoinduced electron
transfer (PET) ",

form traditional technologies through synergistic photocatalytic

For remediation applications, P-CDs outper-

degradation and adsorption mechanisms. Current challenges pri-
marily focus on quantum yield heterogeneity (3.06% —84.9% )
and matrix interference effects (humic acid shielding rates >40% ),
necessitating advanced strategies such as surface passivation, het-
erojunction design, and process standardization for performance
optimization.

This review systematically examines green synthesis strate-
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gies, structure-function modulation mechanisms, and cutting-edge
advances in P-CDs for environmental pollutant detection. It criti-
cally evaluates key pathways for transitioning laboratory innova-
tions to engineering applications while providing theoretical foun-
dations for developing high-efficiency, low-cost, and multifunc-
tional green remediation systems.

1 Green synthesis methods of P-CDs

1.1 Resource advantages and precursor types of medicinal-
edible plants The green synthesis of nanomaterials is transitio-
ning from conventional chemical routes to biomass-derived precur-
sors , with medicinal-edible plants emerging as ideal candidates for
carbon dot fabrication due to their natural functional groups and
Various plant components—including

. [
roots, stems, leaves, seeds, and fruits (e. g. , bamboo leaves I

eco-friendly attributes.

bergamot™ |, Prunus avium' )—are enriched with polyphenols,
amino acids, and alkaloids. These biomolecules serve dual func-
tions as molecular templates for carbon core formation and fluores-
cence enhancers through nitrogen/sulfur self-doping mechanisms.
For instance, Lantana camara flower-derived CDs demonstrate a
quantum yield (QY) of 29% while maintaining 76% mammalian
cell viability at 100 wg/mL, confirming the biosafety advantages of
these precursors .

The valorization of agroforestry waste significantly enhances
the sustainability of this approach. Cassava pulp-derived CDs syn-
thesized via hydrothermal methods achieve an exceptional QY of
82.7% ", enabling simultaneous detection of Hg’*, Cu**, and
Fe'* with detection limits of 12.0, 21.7, and 11.2 M, respec-
tively—performance metrics surpassing those of chemically synthe-

" waste-to-sensor" strategy reduces raw

sized counterparts. This
material costs while eliminating toxic reagents, aligning with glob-
al safety standards for nanomaterial production.

1.2 Overview and comparative analysis of green synthesis
methods Innovations in green synthesis techniques for CDs
have become pivotal in materials chemistry, driven by expan-
ding applications in bioimaging and environmental monitoring.
This section provides a critical evaluation of four mainstream
synthesis strategies, focusing on their mechanisms and technical
limitations ;

(i) Hydrothermal synthesis'""'; It utilizes high-temperature
and high-pressure aqueous environments in sealed reactors to drive
precursor deoxygenation and functional group reorganization.
While its water-only solvent system minimizes environmental im-
pact, low mass transfer efficiency limits production yields.

(ii) Solvothermal synthesis'™ : Tt employs organic solvents
(ethylene glycol, formamide) under similar conditions to enable
controlled dissolution, nucleation, and crystal growth. Polar sol-
vents accelerate carbonization kinetics and enhance functionality
but introduce concerns regarding solvent toxicity and residual con-
tamination.

(iii) Pyrolysis'"

It involves high-temperature cracking
(300 — 800 C) of precursors under inert atmospheres, offering
scalability and low energy consumption. However, product hetero-
geneity hinders device integration.

(iv) Microwave-assisted synthesis; It leverages electromag-

netic resonance for millisecond-scale heating, surpassing conven-
tional thermal conduction rates. Challenges persist with uneven
energy distribution leading to polydisperse particle sizes.
1.3 Structural and functional properties of P-CDs

formance of CDs is governed by three fundamental characteristics

The per-

crystalline structure, size distribution, and surface chemistry™™.
CD cores typically comprise sp’/sp’ hybridized carbon domains,
with some systems exhibiting graphene-like layered architec-

15 . . .
). Porous structures enhance specific surface areas, provi-

tures
ding abundant active sites for adsorption, storage, and catalytic
processes. Intrinsic defects—including vacancies and heteroatom
doping—critically modulate electronic structures and optical prop-
erties. For instance, strategic defect engineering enables tunable
fluorescence emission, a cornerstone capability for sensing and im-
aging applications.

CDs generally exhibit sub — 10 nm diameters (1 - 10 nm
range) , conferring unique physicochemical properties such as cell
membrane permeability—a critical feature for biomedical applica-

) Their optical behavior arises from synergistic mecha-

tions
nisms including quantum confinement, surface state engineering,
and heteroatom doping. Fluorescence emission wavelengths span
visible to near-infrared regions, with characteristic excitation-de-
pendent behavior. CDs demonstrate superior photostability com-
pared to conventional dyes, showing negligible intensity decay un-
der prolonged irradiation. Broad UV-Vis absorption bands contrast
sharply with the sharp peaks observed in semiconductor-based
CDs.

These structural and optical attributes not only underpin ap-
plications in biomedicine, environmental monitoring, and catalysis
but also delineate critical research directions for performance opti-
mization and functional expansion.

2 Environmental pollutant detection using P-CDs

The rapid progression of industrialization and urbanization
has transformed environmental pollution from single-contaminant to
complex multi-pollutant systems, where heavy metals and organic
pollutants synergistically threaten ecosystems and human health.
Within this context, P-CDs have emerged as a disruptive solution
through their " green synthesis-functional integration" paradigm,
advancing pollutant detection capabilities. These nanomaterials
achieve simultaneous detection of heavy metals (Pb’*, Hg’" ) and
organic pollutants (herbicides, dyes) via multimechanistic path-
ways—including static quenching mechanisms (SQM ), dynamic
quenching mechanisms ( DQM ), and energy transfer processes
(FRET/PET)—with detection limits spanning nanomolar to mi-
cromolar ranges (LOD: 0.59 nM -36.8 uM), significantly sur-
passing conventional analytical methods.

The following sections elaborate on detection mechanisms and
environmental application efficacy of P-CDs for heavy metals, or-
ganic pollutants, and emerging contaminants, with particular focus
on critical pathways for transitioning laboratory innovations to envi-
ronmental engineering applications.

2.1 Metal ion detection
persistent toxicity and bioaccumulative behavior, represents a crit-

Metal pollution, characterized by

ical global challenge for environmental and public health. P-CDs
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provide innovative solutions for constructing highly sensitive and
selective fluorescent sensing platforms, leveraging their tunable
surface chemistry (hydroxyl, carboxyl, amino groups) and superior
photophysical properties (quantum yield, QY: 3.06% -84.9% ).
For mercury ion detection—requiring ultrahigh sensitivity and
anti-interference capabilities—carboxyl-mediated SQM in medici-
nal-edible plant-derived CDs forms stable Hg’* coordination com-
plexes (logK =5.7), achieving a detection limit of 5.5 nM (QY
=50.78% ) with 91% recovery under 100-fold sodium ion inter-

ference''”’. Nitrogen-doped CDs enhance Fe’* detection sensitivi-

ty t0 0. 96 uM (QY =13% )", a capability validated through
live-cell imaging applications. Gamma-irradiation strategies fur-
ther optimize surface defect states, reducing Fe’* detection limits
to 14 nM (QY =38.2% )",

2.2 Organic pollutant detection The environmental persist-
ence and biotoxicity of organic pollutants necessitate multidimen-
sional detection systems. P-CDs, with customizable surface func-
tionality and photophysical properties, demonstrate unique advan-
tages in pesticide residue, antibiotic, and emerging contaminant
detection.

For pesticide analysis, SQM enables detection limits as low
as 11.58 nM (QY =71.95% ) with narrow size distributions (4.3 +
0.65 nm)"®!, while PET mechanisms achieve herbicide detection
at2.9 pM (QY =17.02% ) 1 Antibiotic detection integrates
PET-driven sensing (LOD =120 nM, QY =10.05% ) with photo-
catalytic degradation (90% efficiency within 22 min), establis-
hing a detection-remediation synergy "'

Multiplex detection systems leverage SQM-IFE synergies for

simultaneous quantification of CrO;~ (0.81 pM), Fe’* (0.15
pM) "’ and organic molecules ( ascorbic acid: 87. 02 pM;
L-cysteine ; 8.785 pM) across 1.9 —4 000 wM. Ultrasmall CDs
(2.08 nm) mitigate cross-interference via steric hindrance, enab-
ling isomer-specific nitrophenol differentiation ( 2-NP: 39 nM;
3-NP: 43 nM; 4-NP: 26 nM, QY =53% )"*’. For emerging con-
taminants, dual-mode fluorescence-Rayleigh scattering systems re-
duce microplastic detection limits to 0.4 mg/L. (100 x sensitivity
improvement ) **! | overcoming matrix interference. Ionic liquid
grafting enhances probe stability, achieving chlortetracycline de-
tection at 0. 17 uM ( QY =15.42% ) within a narrowed linear
range (0.05 -0.35 pM) >’
2.3 Detection mechanism summary and performance com-
parison SQM and FRET excel in sensitivity (0.59 and 7 nM,
respectively) and selectivity ( >90% ) but require specific coor-
dination pairs or donor-acceptor proximity. IFE and DQM enable
rapid ( <1 min), wide-range detection (1.9 —4 000 uM) but
suffer from coexisting substance interference. PET is indispensable
for antibiotic detection and co-degradation due to redox activity.

Key challenges include QY variability (3.06% —84.9% )
and LOD disparities (0.59 nM —36.8 uM), stemming from pre-
cursor biomolecular diversity ( polyphenol-dependent 1r-7r conjuga-
tion) and synthesis variability ( £5 °C temperature shifts induce
>12% RSD in size distribution). Achieving " compositional con-
trol-structural tunability-process stability" will drive the transition

of P-CDs from laboratory innovation to environmental engineering

applications.
3 Challenges and future directions

P-CDs exhibit remarkable potential in environmental pollu-
tant detection and remediation, yet their transition from laboratory
research to practical engineering applications faces critical techni-
cal barriers. Future research must address the following core chal-
lenges and define breakthrough pathways
While

green synthesis methods (hydrothermal, microwave-assisted) are

3.1 Standardization and process control in synthesis

widely adopted for P-CDs, yield variability ( cassava pulp-derived
CDs achieve 82.7% QY , whereas other plant-derived CDs drop to
3.06% ) and polydispersity (relative standard deviation, RSD >
12% ) hinder scalability. For instance, +5 “C temperature devia-
tions in hydrothermal synthesis induce significant size distribution
shifts, while solvothermal methods, despite accelerating reaction
kinetics (72% yield with ethylene glycol) , raise ethical concerns
over solvent residues. Future advancements demand hybrid tech-
niques ( microwave-hydrothermal integration reduces reaction time
to 45 min while enhancing crystallinity by 20% ) and automated
systems to standardize processes (temperature/pH fluctuations <
+1% ). Additionally, precursor chemical diversity ( polyphenol-
dependent -1 conjugation) requires harmonization via plant vari-
ety screening and genetic engineering. Gamma irradiation, for ex-
ample, optimizes surface defect density in neem resin-derived
CDs, achieving Fe’* detection at 14 nM.

3.2 Multi-scale structural and functional synergy The QY
variability (3.06% —84.9% ) and detection limit (LOD) dispar-
ities (0.59 nM —36.8 uM) stem from synthesis inconsistencies
and surface chemical heterogeneity. Nitrogen-doped cherry fruit-
derived CDs lower Fe’* LOD to 0. 96 wM, while Dunaliella salina
CDs achieve dual Hg'*/Cr®" detection (LOD =18 nM) via DQM
and IFE synergy™’. Future strategies should integrate defect engi-
neering ( sulfur doping enhances Hg’* sensitivity to 5.5 nM) and
core-shell architectures ( CQDs @ TiO, heterojunctions suppress
charge carrier recombination)””’. Multifunctional systems, such
as papaya seed-derived CDs enabling tetracycline detection
(LOD =120 nM) and photocatalytic degradation (90% efficiency
in 22 min) *"' | require machine learning to optimize detection-re-
mediation parameters and mitigate cross-interference (38% selec-

ivity loss in tetracycline/oxytetracycline coexistence ).
tivity | tetracycline/ oxytetracycl t

4 Conclusion

P-CDs demonstrate transformative potential in environmental
pollutant detection and remediation, driven by their green synthe-
sis pathways and multifunctional integration capabilities. The utili-
zation of natural precursors circumvents the high energy consump-
tion and toxic reagents characteristic of conventional nanomaterial
production while enabling ultrasensitive detection ( LODs;
0.59 nM -36.8 uM) and efficient degradation ( >90% efficien-
cy in 22 min) of heavy metals and organic pollutants through syn-

ergistic self-doping and surface functionalization mechanisms. The
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strategic interplay of static quenching mechanisms (SQM), dy-
namic quenching mechanisms ( DQM) , energy transfer processes
(FRET/PET), and photoinduced electron transfer ( PET) has
overcome historical limitations in single-target detection systems.
Concurrently, advanced interfacial engineering and heterojunction
designs have significantly enhanced photocatalytic degradation effi-
ciencies while improving operational stability under complex envi-
ronmental matrices. To realize this technology’s full potential,
three critical challenges require resolution; (i) standardization of
quantum yield parameters ( current range: 3. 06% - 84.9% );
(ii) mitigation of matrix interference effects (humic acid shielding
>40% ); (iii) scalable production of monodisperse particles
( <5% size variation).

Addressing these challenges through interdisciplinary collabo-
ration—integrating materials science, environmental engineering,

and artificial intelligence-driven process optimization—will

accelerate the transition from laboratory prototypes to field-deploy-
able solutions. With continued innovation in defect engineering
and system integration, P-CDs are poised to emerge as a disrup-
tive, eco-compatible nanotechnology platform, advancing the
global transition toward sustainable environmental governance par-
adigms that harmonize ecological preservation with industrial

development.
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