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Abstract This study proposes a novel radar echo extrapolation algorithm, OF-ConvGRU, which integrates Optical Flow (OF) and Convolutional Gated
Recurrent Unit (ConvGRU) methods for improved nowcasting. Using the Standardized Radar Dataset of the Guangdong — Hong Kong — Macao Greater Bay
Area, the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods. Threat Score (TS) and Bias Score (BIAS) were employed to
assess extrapolation accuracy across various echo intensities (20 —50 dBz) and weather phenomena. Results demonstrate that OF-ConvGRU significantly
enhances prediction accuracy for moderate-intensity echoes (30 =40 dBz) , effectively combining OF’s precise motion estimation with ConvGRU’s nonlin-
ear learning capabilities. However, challenges persist in low-intensity (20 dBz) and high-intensity (50 dBz) echo predictions. The study reveals distinct
advantages of each method in specific contexts, highlighting the importance of multi-method approaches in operational nowcasting. OF-ConvGRU shows

promise in balancing short-term accuracy with long-term stability, particularly for complex weather systems.
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The United Nations World Water Development Report high-
lights the significant impact of exireme precipitation events on
these sectors, emphasizing the need for robust infrastructure and
reliable forecasting and warning systems'"’. Consequently, impro-
ving nowcasting accuracy has become an urgent research priority in
meteorology and hydrology.

Radar echo extrapolation, a key method for short-term pre-
cipitation forecasting, can be conceptualized as the estimation and
prediction of temporal trends in image sequences. Algorithmically,
radar echo extrapolation methods can be categorized into tradition-
al approaches and deep learning-based techniques. Traditional
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methods include cross-correlation techniques”
methods™ ™', and centroid tracking algorithms"® However,
These methods often struggle with rapidly evolving local convective
weather systems, where echo development violates conservation as-
sumptions, leading to deteriorating forecast accuracy over time.
RNNs, known for their memory capabilitiesL8J , have been
enhanced with Gated Recurrent Units (GRU) to address long-term
dependency issues’™ . Ballas'™' further developed the Convolu-
tional GRU ( ConvGRU), replacing fully connected layers with
convolutional layers and expanding input and hidden states spatial-
ly. This modification allows spatial feature information to flow be-

tween RNN nodes as three-dimensional tensors, significantly en-
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hancing radar echo extrapolation capabilities. Shi''"’ pioneered the
ConvLSTM model to learn spatiotemporal evolution features be-
tween images. Subsequent improvements led to the development of
Encoder — Forecaster (EF) structures with ConvGRU and TrajG-
RU'™,

traditional LSTM models for radar echo extrapolation. Among

addressing spatial structure representation challenges in

these methods, the ConvGRU approach has demonstrated signifi-
cant potential for practical applications'"’.

This study proposes a novel approach, OF-ConvGRU, which
integrates Optical Flow ( OF) extrapolation results as input for
ConvGRU, aiming to provide more accurate echo evolution infor-
mation. The findings are expected to offer new insights for impro-
ving short-term forecast precision, thereby providing more reliable
support for ecosystem management and water resource allocation

decisions.

1 Materials and methods
The Standardized Radar Dataset of the
Guangdong — Hong Kong — Macao Greater Bay Area, developed by

1.1 Data source

the Shenzhen Meteorological Bureau, was utilized in this study. It
comprises a single vertical layer at an altitude of 2.5 km with a
horizontal resolution of approximately 1 km, covering an area of
about 255 km®. Each sample contains 41 time steps spanning a to-
tal duration of 240 minutes with 6-minute intervals. After data
screening, 16 550 valid samples were retained, of which 11 585
were allocated to the training set, 4 965 to the validation set, and
1 655 to the test set.

1.2 Research methods Radar echo extrapolation was per-
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formed using three methods: Convolutional Gated Recurrent Unit
(ConvGRU ), Optical Flow (OF), and a hybrid approach
combining the two (OF-ConvGRU). OF and ConvGRU served as
baseline methods for comparison with OF-ConvGRU. The extrap-
olation results of these three methods were quantitatively evalua-
ted using Threat Score (TS) and Bias Score ( BIAS), enabling
a comprehensive analysis of their performance strengths and
limitations.

1.3 The OF-ConvGRU method As illustrated in Fig. 1, the
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model employs a coupling mechanism that utilizes OF extrapolation
results as frame-by-frame inputs for the ConvGRU. This approach
more directly reflects improvements compared to simple superposi-
tion. Specifically, OF extrapolation results at time T replace the
0 dBz echo predicted by ConvGRU, while OF predictions for
strong echoes above 40 dBz substitute the corresponding ConvGRU
results to mitigate ConvGRU’s intensity attenuation issue. This
coupling strategy is denoted by the " +" symbol in the figure and

can be expressed as follows:
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Fig.1 Schematic diagram of the OF-ConvGRU model architecture
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[nputCunvGRU, T+l = Outputwy T[ ( Output(fam/GRU, r=0) N ( OutPutor, 7 >40 dBz) ]

where Input,,,cp, r,, represents the input of ConvGRU at time
T +1, Output,,,,cpy. v and Output, . represent the output of Conv-
GRU and OF at time T, respectively. N represents intersection.
Prior to model training, the radar echo dataset underwent
normalization preprocessing to the [0, 1] interval to optimize net-
work performance. The training process utilized the Adam optimi-
zer with an initial learning rate of 0. 001. Considering the varying
importance of predicting different echo intensities, a weighted root
mean square error ( WMSE) was selected as the loss function cal-

culated as shown in the equation (2). This design aims to enable

the model to capture strong echo features more accurately, thereby
enhancing prediction precision.
1, dBz<20
2,20<dBz<25
w (dBz) =43, 25<dBz <30 (2)
4, 30<dBz <40
5, dBz=40

2 Results and analysis

2.1 Extrapolation of squall line echoes Squall lines are in-
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tense mesoscale convective systems featuring linearly arranged
thunderstorms. Fig. 2 illustrates that the squall line is moving to-
wards the lower right, consistent with the echo evolution observed
over the past 30 min (Fig.3). Apart from the areas in the lower
left and upper right corners of the image, there are extensive re-
gions with low or no velocity. This results in small OF-extrapola-
ted echo displacement vectors and a merging of extrapolated ech-
oes. However, the actual echo movement is towards the upper-
right direction. Consequently, the displacement vector calculated
by the SLAS shows significant deviation from the observed
movement.

Fig. 4 presents a comparison of observed results with extrapo-
lations from three methods at 30, 60, 90, and 120 min forecast
lead times. OF-ConvGRU demonstrates superior overall perform-
ance, maintaining the general echo structure while effectively cap-

turing the evolution of strong echo regions. In contrast, ConvGRU,
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Fig.2 The displacement vector inversion based on the optical flow
(OF) method
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Fig.3 Five frames of radar echo observation images in the first 30 min

while preserving the approximate echo morphology in short-term
forecasts, exhibits significant intensity attenuation and structural
blurring as forecast time increases. The OF method excels inmain-
taining echo intensity and detail but shows notable deviations in

predicting echo movement and morphological changes, particularly
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in longer-term forecasts. Notably, OF-ConvGRU maintains the
overall echo structure and intensity distribution well even at 120
min, indicating its potential for extended forecasts. However, all
methods still have room for improvement in predicting small-scale

features and precisely locating strong echo regions.
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Fig.4 The extrapolated echoes of the three algorithms for a squall line process

Fig. 5 illustrates the performance of OF, ConvGRU, and OF-
ConvGRU methods in squall line forecasting. At 20 and 30 dBz
thresholds, OF-ConvGRU demonstrates the highest and most sta-
ble TS scores with optimal BIAS, indicating superior performance
in capturing the overall squall line structure, likely due to its inte-
gration of OF’s precise motion estimation and ConvGRU’s nonlin-
ear evolution prediction capabilities. At 40 dBz, OF excels in
short-term forecasts, while OF-ConvGRU shows greater long-term

stability, reflecting OF’s advantage in maintaining strong echo

structures and OF-ConvGRU’s ability to predict sustained evolu-
tion. At 50 dBz, all methods show significant degradation, espe-
cially long-term, highlighting the challenge of predicting extremely
strong convective regions within rapidly evolving squall lines.
Overall, OF-ConvGRU exhibits the best comprehensive perform-
ance, particularly in capturing overall structure and evolution,
though all methods face challenges in predicting long-term evolu-

tion of extremely strong convective cores.
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Fig.5 Variations of evaluation scores on the extrapolation results of the three algorithms for a squall line process under the thresholds of 20 dBz

(a), 30 dBz (b), 40 dBz (c) and 50 dBz (d)

3 Conclusion and discussion

Based on the comprehensive analysis of the OF-ConvGRU
method and its comparison with OF and ConvGRU approaches, the
following conclusions can be drawn

(1) The OF-ConvGRU model demonstrates superior perform-
ance in nowcasting complex weather systems, particularly for mod-
erate-intensity echoes (30 —40 dBz). It effectively combines the
strengths of optical flow’s precise motion estimation and
ConvGRU’s nonlinear learning capabilities, resulting in more accu-
rate predictions of overall echo structure and evolution. This is evi-
denced by higher and more stable Threat Scores (TS) across vari-
ous weather phenomena, including squall lines and scattered se-
vere convection.

(2) While OF-ConvGRU shows significant improvements, it

still faces challenges in certain scenarios. For low-intensity echoes
(20 dBz), it tends to produce false alarms, and for high-intensity
echoes (50 dBz), it lacks effective quantitative extrapolation.
These limitations suggest that further refinement of the model is
necessary to enhance its performance across the full spectrum of
echo intensities, particularly for extreme weather events.

(3) The comparative analysis reveals that each method (OF,
ConvGRU, and OF-ConvGRU) has distinct advantages in specific
contexts. OF excels in maintaining echo intensity and fine-scale
structures, especially for short-term forecasts of strong echoes.
ConvGRU shows promise in capturing overall echo morphology but
suffers from intensity attenuation over time. OF-ConvGRU bal-
ances these strengths, offering more stable long-term predictions

and better representation of echo evolution. This underscores the
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importance of considering multiple approaches in operational now-
casting to address the diverse characteristics of different weather

systems.
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