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Effects of Alternate Moistube Irrigation on the Growth of
Spinach ( Spinacia oleracea) and Water Spinach ( Ipomoea
aquatica) under Controlled Conditions

Lixia SHEN* , Ronghao LIU, Shuhui LIU

College of Water Conservancy and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract Moistube irrigation is a newly-developed irrigation technique that utilizes a semipermeable membrane to release water slowly and continuously into the
plant root zone. Alternate Moistube Irrigation (AMI) is a combination of alternative irrigation and moistube irrigation. In order to investigate the effects of AMI on
plant growth, greenhouse experiments were conducted on spinach ( Spinacia oleracea) and water spinach (Ipomoea aquatica) plants at different time. We measured
soil water content at a depth of 20 cm in the planting boxes, and also determined seed emergence rate, plant height, largest leaf area, fresh weight per plant, yield,
and irrigation water productivity (IWP) for both spinach and water spinach. The results showed that the AMI treatments had significantly higher soil water content
than the conventional surface irrigation control (CK). The emergence rates of spinach and water spinach were significantly higher in the AMI treatments than in the
CK, and the plant height, largest leaf area, and fresh weight during the middle and late stages of spinach and water spinach growth were also significantly higher
than those of the CK. Both spinach and water spinach grew well and produced high yield with high IWP under AMI with a high water head pressure of 1.5 m at tube
spacing of 20 or 30 ¢cm. We found that AMI with a suitable combination of head pressure and tube spacing can promote plant growth and increase yield and IWP un-

der controlled conditions.
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Shortage of freshwater resources has become a bottleneck that
restricts agricultural development and global food security’' ™. In
order to alleviate the contradiction between limited arable land
with a shortage of fresh water resources on the one hand, and the
rise in world food demand on the other, many countries are active-

70 At present, the

ly developing water-saving irrigation methods'
effective irrigation area of farmland in China is 52% , of which the
micro-irrigated area accounts for 12% . Micro-irrigation, represen-
ted by drip irrigation, is one of the best water-saving techniques
for farmland irrigation'’ . The general drip irrigation system, in
addition to water and energy consumption, needs to be equipped
with electrical machinery, high-pressure pumps, control boxes,
and other equipment in the irrigation system. Its popularity and
application are limited in areas that are far away from water
sources, that lack electricity, and that have complex topography.
In this context, a new type of water-saving irrigation technology,
known as Moistube Trrigation (MI), also called semi-permeable
membrane irrigation, has been introduced in recent years to arid
areas in China and abroad'* """

MI is a new irrigation technology that is similar to drip irriga-
tion. However, instead of emitters, water is delivered from a
semi-permeable membrane in the moistube tape depending on the

applied pressure and the soil water potential of the surrounding
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soil. A moistube is a double-layer hose water supply device with a
semi-permeable polymer membrane as its core material. The film
thickness is the same as that of ordinary plastic film, with about
100 000 holes per square centimeter and a wall diameter of 10 —
900 nanometers. Nano-scale micro pores allow water molecules to
pass through, while larger molecules and solids cannot. Membrane
tubes function as semi-permeable membranes and have unidirec-
tional permeability and osmotic pressure characteristics'”>™'*. The
outer membrane tube is a type of permeable high strength industri-
al non-woven sheath, which has the function of pressure resistance
and protection. When the pipe is buried in the ground and filled
with water, the water automatically moves out of the pipe, driven
by the potential difference between the water inside and outside
the film to achieve irrigation. MI takes advantage of the special
properties of semi-permeable membranes to provide timely and suf-

ficient water for crop root areas in a continuous flow manner, and
5,17

the soil is constantly wet"”" ' The rate at which water is released
through the nanopore membrane depends on the pressure applied
to the system, and allows for easy adjustment of water release by

"8 The moistube discharge increa-

simply changing the pressure
ses with increasing pressure, and the pressure discharge relation-
ship follows a power function'""’. Because of the continuous irriga-
tion with underground micro-slow-release, the deep seepage and
surface evaporation are effectively controlled, resulting in clear
water savings. In addition, the system only needs soil water with a
low water pressure head and negative voltage potential to operate,
thus saving energy. MI is gradually being promoted and adopted in
China. For greenhouse-grown tomatoes, Xue et al. "'’ found that
MI had 13% higher water use efficiency than drip irrigation, while

Lyu et al. ™’ found that MI gave water savings of 38% compared
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to drip irrigation with mulch. The higher water use efficiency and
water savings of MI compared to conventional drip irrigation can be
explained by the fact that the former supply water is at 80% -
90% of field capacity, which is a form of deficit irrigation and
thus improves crop water productivity and water use efficiency >’

At present, research on MI mainly focuses on conventional
continuous irrigation. However, some studies have shown that
compared with conventional MI, MI with an alternate watering in-
terval of 2 d has a significant compensatory effect on tomato root
absorbency, enhancing their ability to absorb soil moisture, and
reducing water consumption and improving water use efficiency
without significantly reducing fruit yield™ . Attempts at alternate
row irrigation or alternate furrow irrigation for some crops can be
traced back to the 1970s, and since the 1990s, studies on the
principle of plant root signaling under water stress have provided a

23-26) At present, alter-

(31

theoretical basis for alternate irrigation

27-30) 347
L have

nate furrow irrigation and alternate drip irrigation
been used on many crops. For example, the control of alternate
root zone irrigation technology can reduce plant transpiration and
soil water evaporation by alternately washing roots at some or all
stages of crop growth while other root zones are under artificial wa-
ter stress, thus saving water and improving water use efficiency.
However, there are few studies examining the combination of MI
and alternate irrigation.

In this study, the effects of Alternate Moistube Irrigation
(AMI) on the growth of spinach ( Spinacia oleracea L. ) and water
spinach ( Ipomoea aquatica Forssk. ) were determined in con-
trolled greenhouse experiments. We used two head pressures (1.0
and 1.5 m) and two tube spacing (20 and 30 cm) to identify suit-
able alternate irrigation parameters. This work will enable an un-
derstanding of the application, design, and operational require-

ments of AMI systems.

Materials and Methods
Experimental details

The experiments were carried out in the plastic greenhouse of
the College of Water Conservancy and Engineering, Taiyuan Uni-
versity of Technology, China (37°86" N, 112°53" E). The test
site was located in a typical semi-arid region with a continental
monsoon climate, annual average precipitation of 456.7 mm, and
an annual average temperature of 9.56 C.

The equipment used in the experiment was an elevated water
tank, a moistube pipe, a water delivery pipe, and a planting box
(Fig. 1). The water tank with a floating ball valve was used to
maintain a constant pressure head, and different pressure heads
were produced by placing the water tank on adjustable height
brackets. The moistube pipe was produced by Shenzhen Moistube
Irrigation Co. , Ltd. The inner diameter of the moistube pipe was
16 mm, and the wall thickness was 1 mm. The water delivery pipe
was a black polyethylene ( PE) pipe with an inner diameter of
16 mm. The planting box was 90 c¢cm x 50 ¢m x40 cm (length,
width, and height) , and was wooden with drainage holes at the

bottom. Two moistube pipes were laid horizontally in a planting
box, with a tube spacing of 20 or 30 cm, and were buried to a
depth of 15 em. The moistube pipes were connected to the elevat-
ed water tank by the water delivery pipe, and valves were installed
to control the water supply for AMI. The water used was filtered
urban tap water.

Spinach seeds were sown in the planting box on April 18,
2024, and the plants were harvested on May 24, 2024. Three rows
of spinach with a row spacing of 15 ¢cm were planted in each plant-
ing box, and the number of spinach seeds was equal in each row.
There were 10 boxes of spinach grown in each treatment. Of them,
three boxes of spinach were used to measure the yield at harvest,
and no samples were taken during growth. The soil in the planting
box was an organic nutrient soil produced by Hong Si Fang Gar-
dening Co. , Ltd. Soil bulk density was 0.75 g/cm’, and the ini-
tial soil water content was 23.2% . The organic matter content of
the soil was 25.6% , and the soil pH was 6.0.

Water spinach seeds were sown in the planting box on June
2, 2024, and the plants were harvested on July 8, 2024 using

planting methods. Other conditions were the same as those for

spinach.
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Fig. 1 Experimental equipment and planting system design

Treatments and measurements

Treatments in the experiment consisted of the factorial combi-
nations of (i) two head pressures of 1 m (Hl) and 1.5 m (H2),
and (ii) two tube spacing of 20 cm (S1) and 30 cm (S2). Con-
ventional surface irrigation was used as the control (CK). Before
sowing, both moistube pipes were placed in a planting box sup-
plied with sufficient water to ensure soil moisture for seed germina-
tion in the HIS1, HI1S2, H2S1, and H2S2 treatments, and an
equal volume of water was supplied to the planting box for the CK
by conventional surface irrigation. After sowing, one of the mois-
tube pipes was used to supply water for 4 d. It was then stopped,
and the other moistube pipe was used to supply water for the fol-
lowing 4 d. Both pipes were used to alternate the water supply,
changing every 4 d, and the irrigation volume was recorded and
calculated. The planting box for the CK was irrigated at 08 ;00 ev-
ery day with an irrigation volume equal to the average outflow of
one moistube pipe under the H1 and H2 head pressures. Soil wa-

ter content at a 20-cm depth in the planting boxes was determined
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by a drying method during the growth of spinach or water spinach
in which the soil water content was measured at three points ran-
domly selected from each row, and the average values were ob-
tained from all nine points in the three rows. The emergence rates
for spinach and water spinach were calculated at 8 d after sowing
(DAS). Plant height, largest leaf area, and fresh weight per
plant for spinach and water spinach were determined during
growth, and yield (fresh weight) was measured at harvest. The
largest leaf area was determined by the paper cut-out weighing
method. In specific, the largest leaf blade was traced onto a piece
of A4 paper and cut out. The paper leaf was then weighed and
compared to the weight of the whole sheet of paper, and the ratio
was used to calculate the leaf area. We also calculated irrigation
water productivity (IWP) , which is defined as the yield produced
per unit of irrigation water used.
Data analysis

Analysis of variance was performed to determine the effects of
AMI on soil water content, emergence rate, plant height, largest
leaf area, yield, and IWP of spinach and water spinach using
Tukey’s Honest Significant Difference (HSD) test. The notations
a and b are used in Fig. 3 and Fig. 4 to indicate a significant
difference at P < 0. 05. Statistical analysis was performed using
IBM SPSS Statistics version 20. 0 ( IBM Corporation, Somers,
New York).

Results and Discussion
Soil water content

The change in soil water content at a depth of 20 ¢m in the
planting boxes during the growth of spinach and water spinach
plants is shown in Fig. 2. As spinach growth progressed, soil
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water content for all the treatments increased slightly, although the
changes were minimal. At 12 —-32 DAS, soil water contents were
significantly higher for the AMI treatments than for the CK
(P <0.05). Soil water contents were also higher for the H1SI1,
H2S1, and H2S2 treatments compared to H1S2, and there was no
significant difference in soil water contents among the HI1SI1,
H2S1, and H2S2 treatments.

During the growth of water spinach plants, soil water contents
for all treatments decreased slightly with minimal change. At
8 —32 DAS, soil water contents were significantly higher for the
AMI treatments compared to the CK, soil water contents were
higher for the H1S1, H2S1, and H2S2 treatments than for H1S2,
and there were no significant differences in soil water content a-
mong the H1S1, H2S1, and H2S2 treatments.

Wang et al. ™ reported that the 20-cm-depth soil water
content in planting boxes during the growth of pepper or large leaf
chrysanthemum plants under AMI was higher than it was for con-
ventional surface irrigation. The same result was observed in this
experiment. Li et al. ) examined the effects of head pressure on
the growth of tomatoes in a greenhouse were using MI, and the re-
sults showed that head pressure significantly affected soil moisture
content and the size of the wetting zone. They also showed that soil
moisture content under MI was higher than that under drip irriga-
tion, and that MI formed a continuous and stable water environ-
ment in which the crop could grow. In our experiment, when the
tube spacing was 30-cm (S2) under AMI, the soil water content
was higher at the H2 head pressure (1.5 m) than at the HI head
pressure (1 m), which showed that with the increased tube spac-
ing, the higher head pressure could ensure a higher soil water
content.
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Fig. 2 Soil water content for spinach and water spinach grown in the greenhouse in planting boxes with AMI

Emergence rate, plant height, leaf area and fresh weight

As shown in Fig. 3(a), the emergence rates of spinach seeds
at 8 DAS were ranked in the order H2S1 > H2S2 > H1S1 > H1S2 >
CK. Emergence rates for the H2S1, H2S2, and HIS1 treatments
were significantly higher than those for H1S2 and the CK, and the
rate for HIS2 was significantly higher than it was for the CK. At
12 —36 DAS, the plant height, largest leaf area, and fresh weight
per plant for spinach increased gradually during the growth

process. The plant heights and largest leaf areas were significantly

greater for the AMI treatments than for the CK at 20 — 36 DAS.
Fresh weight per plant increased slowly from 12 —20 DAS with no
significant differences among all the treatments, but it increased
quickly from 20 —36 DAS, when fresh weights were significantly
higher in the AMI treatments than in the CK.

As shown in Fig. 3(b), the emergence rates of water spinach
seeds at 8 DAS were ranked in the order H2S2 > H1S1 > H2S1 >
H1S2 > CK. Emergence rates were significantly higher in the
H2S2, H1S1, and H2S1 treatments than in the H1S2 treatment
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The lowercase letters a and b indicate significant differences (P <0.05) based on Tukey’s Honest Significant Difference (HSD) test.
Fig. 3 Seed emergence rate, plant height, leaf area, and fresh weight for spinach and water spinach grown using Alternate Moistube Irrigation

(AMI)
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and the CK, and emergence was significantly higher in H1S2 than
in the CK. At 12 —36 DAS, the plant height, largest leaf area,
and fresh weight per plant for water spinach increased gradually as
the growth process progressed. Plants were taller in the AMI treat-
ments than in the CK at 12 =20 DAS, and were significantly taller
in the AMI treatments than for plants in the CK at 24 — 36 DAS.
The largest leaf areas were greater in the H1S1, H2S1, and H2S2
treatments than in HIS2 and the CK, and the largest leaf area was
greater in the H1S2 treatment than in the CK. At 24 —36 DAS,
the largest leaf areas in the H1S1, H2S1, and H2S2 treatments
were significantly different compared to HIS2 and the CK, and al-
so in H1S2 compared with the CK. There were no significant
differences in the largest leaf area among the HIS1, H2S1, and
H2S2 treatments. Fresh weight per plant increased slowly from
12 —24 DAS with no significant differences among all the treat-
ments, but it increased rapidly from 24 —36 DAS, and was signifi-
cantly higher in the HISI, H2S1, and H2S2 treatments compared
to H1S2 and the CK, and fresh weight per plant was also signifi-
cantly higher in the H1S2 treatment than in the CK.

Wang et al. ™ reported that large leaf chrysanthemum
grown using AMI showed a growth advantage compared to con-
ventional surface irrigation, and the plant height, stem diameter,
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and fresh weight per plant grown under AMI were higher than those
grown using conventional surface irrigation. In our experiment, the
emergence rate, plant height, largest leaf area and fresh weight per
plant for spinach and water spinach grown under AMI were higher
than for plants grown using conventional surface irrigation.

Yield and irrigation water productivity

As shown in Fig. 4(a), spinach yield and IWP (irrigation
water productivity ) were ranked in the order of H2S1 > H2S2 >
HISI > H1S2 > CK, and both were significantly higher in the
H2S1 and H2S2 treatments than in H1S1, H1S2, and the CK, and
they were significantly higher in the H1S1 treatment than in H1S2
and the CK. There were no significant differences in either yield or
IWP for water spinach between the H2S1 and H2S2 treatments, or
between H1S2 and the CK.

As shown in Fig. 4(b), the yield and IWP for water spinach
were ranked in the order of H2S1 > H2S2 > H1S1 > H1S2 > CK.
They were both significantly higher in the AMI treatments than in
the CK, and were significantly higher in the H2S1 and H2S2 treat-
ments than in HIS1 and H1S2. There were no significant differ-
ences in the yield or IWP for water spinach between the H2S1 and
H2S2 treatments, or between H1S1 and H1S2.
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The lowercase letters a and b indicate significant differences (P <0.05) based on Tukey’s Honest Significant Difference (HSD) test.
Fig. 4 Yield and IWP for spinach and water spinach grown in a greenhouse with Alternate Moistube Irrigation ( AMI)

Previous experiments have shown that for pepper, yield and
IWP were higher for plants grown under AMI than for those grown

using conventional surface irrigation, and this was also the situa-
tion for large leaf chrysanthemum. In pepper, the yield and IWP
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were higher with a head pressure of 1.0 m compared to a head
pressure of 1.5 m, while for large leaf chrysanthemum, the yield
and IWP were higher for plants grown using a head pressure of
1.5 m compared to those grown with a head pressure of 1.0 m.
The reason for this is that pepper consumes more water than large
leaf chrysanthemum, and the high soil water content under the
higher head pressure could meet the needs of pepper. In our ex-
periment, both spinach and water spinach preferred the higher
head pressure due to high soil water content no matter whether the
tube spacing was 10 or 20 ¢m under AMI.

Conclusions

In this study, the effects of head pressure and tube spacing
on the growth of spinach and water spinach plants grown using
AMI were studied in greenhouse experiments. The results showed
that the AMI treatments had significantly higher soil water contents
at a depth of 20 ¢m in the planting boxes compared to the CK. The
emergence rates of spinach and water spinach seeds were signifi-
cantly higher in the AMI treatments than they were in the CK. In
the middle and later stages of spinach and water spinach growth,
the plant heights, largest leaf areas, and fresh weights in the AMI
treatments were significantly greater than in the CK. The yield and
IWP of spinach and water spinach were significantly higher in the
H2S1 and H2S2 treatments than in the H1S1 and H1S2 treatments
and the CK. Both spinach and water spinach grew well and pro-
duced high yield with high IWP under AMI at the higher H2 head
pressure regardless of whether the tube spacing was S1 or S2.

AMI is a new water-saving irrigation method, and with a suit-
able combination of head pressure and tube spacing, it can pro-
mote plant growth and increase yield and IWP. Further investiga-
tion of the effects of AMI on plant growth and yield needs to be
conducted under field conditions.
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